If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x-20=0
a = 2; b = -16; c = -20;
Δ = b2-4ac
Δ = -162-4·2·(-20)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{26}}{2*2}=\frac{16-4\sqrt{26}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{26}}{2*2}=\frac{16+4\sqrt{26}}{4} $
| x/x+20=1/5 | | (4x+23)=(7x-4) | | 9x=4x+8 | | 5n^2+60=0 | | X+6x-9x+19=0 | | n(n-1)(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)=8 | | 7t=13t+24 | | 8^2x=17 | | 8^2x+3=20 | | −7(x+4)+1=6(x+5) | | (27+x)+x=501 | | 25-3x=1/4 | | 12n+4=88 | | (5+x)+x=33 | | 8-4(x+2)+3(x-1)=5(x-4)+2(x+3) | | 3+4x+2x=15 | | 7(x-3)=9(x+2)-47 | | 7(x+15)=3(x+7) | | 4(2x-5)-(12-3x)=1 | | 20p+4p=14p | | 2(x+3)+5(x-2)=10 | | 9x+2x+3x-1=4x+22 | | 2x+43=5(x+2) | | 12x+12=2x=25 | | 12b+24= (b+2) | | 0.4×(x)=32 | | X-(100-x)=30 | | 4(x-1)=5x+6 | | 43/x=43/2x | | xx8=48 | | 4=4(2x+5) | | a÷9=9 |